Troubleshooting Guide
Stud Welding Unit N3
TABLE OF CONTENTS

1. General Information

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 System Components</td>
<td>6</td>
</tr>
<tr>
<td>1.2 N3 Power Unit Functions</td>
<td>7</td>
</tr>
<tr>
<td>1.3 N3 Power Unit Components</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Inverter Engine</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Micro Processor</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Power Unit Control Card</td>
<td>11</td>
</tr>
<tr>
<td>1.7 FSE Feeder Control Card</td>
<td>12</td>
</tr>
<tr>
<td>1.8 HMI Control Card</td>
<td>13</td>
</tr>
<tr>
<td>1.9 FSE 100 Feeder Functions</td>
<td>14</td>
</tr>
<tr>
<td>1.10 System Architecture</td>
<td>15</td>
</tr>
</tbody>
</table>

2. Wrong Stud Error

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Feeding Problem</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Studs builds up on the side walls of FSE 100</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Chuck Problem</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Referenz Methode</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Push Test / Push Test ++</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Isolation Tube</td>
<td>23</td>
</tr>
<tr>
<td>2.7 No Contact Error</td>
<td>24</td>
</tr>
<tr>
<td>2.8 No Arc</td>
<td>25</td>
</tr>
<tr>
<td>2.9 Contact Light Always "On"</td>
<td>26</td>
</tr>
<tr>
<td>2.10 Arc Voltage Lost</td>
<td>27</td>
</tr>
<tr>
<td>2.11 Weld Cycle interrupted</td>
<td>28</td>
</tr>
<tr>
<td>2.12 Safety Circuit Error</td>
<td>29</td>
</tr>
<tr>
<td>2.13 Low Current NIO Error in Process Monitor</td>
<td>30</td>
</tr>
<tr>
<td>2.14 NIO ARC Voltage</td>
<td>31</td>
</tr>
<tr>
<td>2.15 Error in Gun / Head Movement</td>
<td>32</td>
</tr>
<tr>
<td>2.16 Head not retracted Position</td>
<td>33</td>
</tr>
<tr>
<td>2.17 Current Level error</td>
<td>34</td>
</tr>
<tr>
<td>2.18 Can Bus Error</td>
<td>35</td>
</tr>
</tbody>
</table>

3. Components

4. Fuse Problems

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Fuse in Feeder is blown (90V)</td>
<td>37</td>
</tr>
<tr>
<td>4.2 Fuse (F1, F2, F3) in N3 power supply board are blown</td>
<td>38</td>
</tr>
<tr>
<td>4.3 Fuse (F4, F5, F6) in N3 power supply board are blown</td>
<td>39</td>
</tr>
<tr>
<td>4.4 Fuse (F 10) in N3 power supply board is blown</td>
<td>40</td>
</tr>
<tr>
<td>4.5 Fuse (F 11) in N3 power supply board is blown</td>
<td>41</td>
</tr>
<tr>
<td>4.6 Fuse (F 12) in N3 power supply board is blown</td>
<td>42</td>
</tr>
<tr>
<td>4.7 F1 in Inverter Module</td>
<td>43</td>
</tr>
</tbody>
</table>

5. Error Messages

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Error Classes</td>
<td>44</td>
</tr>
<tr>
<td>5.2 Error List</td>
<td>45</td>
</tr>
<tr>
<td>5.3 Internal Errors Feeder</td>
<td>49</td>
</tr>
</tbody>
</table>
Hardware Errors Code 0x10-0x1F

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10</td>
<td>Line contactor OFF!</td>
</tr>
<tr>
<td>0x11</td>
<td>Protective grid open</td>
</tr>
<tr>
<td>0x12</td>
<td>Switch protective grid</td>
</tr>
<tr>
<td>0x13</td>
<td>Temperature too high!</td>
</tr>
<tr>
<td>0x14</td>
<td>Phase under voltage!</td>
</tr>
<tr>
<td>0x15</td>
<td>Power supply unit error!</td>
</tr>
<tr>
<td>0x16</td>
<td>SPI-bus!</td>
</tr>
<tr>
<td>0x17</td>
<td>Battery undervoltage!</td>
</tr>
<tr>
<td>0x1D</td>
<td>Protective circuit relay</td>
</tr>
<tr>
<td>0x1E</td>
<td>Short-circuit / overload!</td>
</tr>
<tr>
<td>0x1F</td>
<td>No voltage supply!</td>
</tr>
</tbody>
</table>

System Errors Code 0x00-0x0F

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>System Reset!</td>
</tr>
<tr>
<td>0x02</td>
<td>Fast ram!</td>
</tr>
<tr>
<td>0x03</td>
<td>Low power ram!</td>
</tr>
<tr>
<td>0x04</td>
<td>Dual port ram!</td>
</tr>
<tr>
<td>0x05</td>
<td>Dual port ram (init)!</td>
</tr>
<tr>
<td>0x06</td>
<td>Dual port ram (Watchdog)!</td>
</tr>
<tr>
<td>0x07</td>
<td>No configuration data!</td>
</tr>
<tr>
<td>0x08</td>
<td>System IRQ (error!!!)</td>
</tr>
<tr>
<td>0x09</td>
<td>No communication with user panel</td>
</tr>
<tr>
<td>0x0A</td>
<td>Inverter card!</td>
</tr>
<tr>
<td>0x0B</td>
<td>Bus address!</td>
</tr>
<tr>
<td>0x0C</td>
<td>No EEPROM data!</td>
</tr>
</tbody>
</table>

Parameter Errors Code 0x20-02F

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x20</td>
<td>No welding program!</td>
</tr>
<tr>
<td>0x21</td>
<td>Data pool welding programs full!</td>
</tr>
<tr>
<td>0x22</td>
<td>Write error configuration data!</td>
</tr>
</tbody>
</table>

Welding Cycle Errors Code 0x30-0x3F

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x30</td>
<td>NIO weld!</td>
</tr>
<tr>
<td>0x31</td>
<td>No contact!</td>
</tr>
<tr>
<td>0x32</td>
<td>Current threshold</td>
</tr>
<tr>
<td>0x33</td>
<td>Arc voltage lost</td>
</tr>
<tr>
<td>0x34</td>
<td>No arc!</td>
</tr>
<tr>
<td>0x35</td>
<td>Welding cycle interrupted!</td>
</tr>
<tr>
<td>0x36</td>
<td>Synchronisation error!</td>
</tr>
<tr>
<td>0x37</td>
<td>Welding process active!</td>
</tr>
<tr>
<td>0x38</td>
<td>Welding process error!</td>
</tr>
<tr>
<td>0x39</td>
<td>Timeout welding process!</td>
</tr>
<tr>
<td>0x3A</td>
<td>No measured values!</td>
</tr>
<tr>
<td>0x3B</td>
<td>Plunge obstruction!</td>
</tr>
<tr>
<td>0x3C</td>
<td>Protective gas failure</td>
</tr>
<tr>
<td>0x3D</td>
<td>Simulation</td>
</tr>
</tbody>
</table>
Troubleshooting Guide
Stud welding unit N3
As of: 29.11.2007

10. Infeed Errors Code 0x40-0x4F

10.1 Code: 0x40 No R-position!
10.2 Code: 0x41 No V-position!
10.3 Code: 0x42 Timeout infeed!
10.4 Code: 0x43 Infeed error!
10.5 Code: 0x4A Angular position NIO

11. Welding Tool Errors Code 0x50-0x5F

11.1 Code: 0x50 Servo controller defective!
11.2 Code: 0x51 Servo init. faulty!
11.3 Code: 0x52 Servo error input!
11.4 Code: 0x53 Servo overload current!

12. Feeder Errors Code 0x60-0x6F

12.1 Code: 0x60 Rail filling level min.!
12.2 Code: 0x61 Feeder filling level min.!
12.3 Code: 0x62 Bunker filling level min.!
12.4 Code: 0x63 Feeder cover open!
12.5 Code: 0x64 Lack of compressed air!
12.6 Code: 0x65 Feeder key switch!

13. Feed Errors Code 0x70-0x7F

13.1 Code: 0x70 No stud fed!
13.2 Code: 0x71 Wrong stud!
13.3 Code: 0x72 Incorrect stud!
13.4 Code: 0x73 Feed fault loading pin!
13.5 Code: 0x74 Förderstörung optischer Sensor!
13.6 Code: 0x75 Feed fault optical sensor!
13.7 Code: 0x76 Stud feed protective circuit open!
13.8 Code: 0x77 Stud/program allocation

14. CAN Errors Code 0x80-0x8F

14.1 Overview CAN BUS Errors
14.2 Code: 0x80 CAN-message faulty!
14.3 Code: 0x81 CAN-Message Timeout!
14.4 Code: 0x82 CAN transmission FIFO full!
14.5 Code: 0x83 CAN 1 bus error!
14.6 Code: 0x84 CAN 1 bus OFF!
14.7 Code: 0x85 CAN 1 bus error!
14.8 Code: 0x86 CAN 1 bus error!
14.9 Code: 0x87 CAN 2 bus error!
14.10 Code: 0x88 CAN 2 bus OFF!
14.10.1 Code: 0x89 CAN 2 bus error!
14.11 Code: 0x8A CAN 2 bus error!
14.12 Code: 0x8B CAN bus monitoring
15. **External Communication Errors Code 0x90-0x9F** ... 139
 15.1 Code: 0x90 No program selection! ... 139
 15.2 Code: 0x95 Incorrect interface module ... 140
 15.3 Code: 0x96 Bus initialisation error! ... 141
 15.4 Code: 0x97 No bus communication! ... 142
 15.5 Code: 0x98 Bus Idle! ... 143
 15.6 Code: 0x99 Bus reset! ... 144

16. **Process Errors, Code 0xA0-0xAF** ... 145
 16.1 Code: 0xA0 Unacknowledged error! ... 145
 16.2 Code: 0xA1 Process fault .. 146

17. **Facility Errors, Code 0xB0-0xBF** ... 147
 17.1 Code: 0xB0 Feeder configuration error! ... 147
 17.2 Code: 0xB1 Tool configuration error! ... 148
 17.3 Code: 0xB2 Maintenance 80 ... 149
 17.4 Code: 0xB3 Maintenance 100 ... 150
 17.5 Code: 0xB4 Maintenance .. 151
 17.6 Code: 0xB5 Error frequency ... 152
 17.7 Code: 0xBA Ethernet ON... 153
 17.8 Code: 0xBB Ethernet OFF ... 154
 17.9 Code: 0xBC Ethernet ... 155
 17.10 Code: 0xBF Facility configuration ... 156
1. General Information

The error description section serves as a help for the analysis and rectification of problems which may occur during the commissioning or operation of the stud welding unit.

Error messages have the following structure:

- Error class
- Error code
- Error information 1
- Error information 2
- Error information 3
- Error time

All errors are assigned to error classes which signal the severity of the error (refer to the Error Classes subsection).

The errors as well as the respective information are explained in the following description. The error code is displayed or output in hexadecimal form.

The error code is output on the internal 7-segment displays of the N3 stud welding unit and in the system components, if available.

In the operating panel of the N3 stud welding unit, the error messages are displayed in plain text, including the error time (refer to the N3 Programming Manual).

The N3 stud welding unit continuously logs 50 consecutive errors in an error buffer. The occurring errors are saved in a manner protected against mains failure.
1.1 System Components

N3 Power Unit FSE 100 Stud Feeder KSE 100 Weld Head
1.2 N3 Power Unit Functions

- Central Controller of Peripheral Devices
- Develops and Controls Weld Current
- HMI for Data Input and Feedback
- Provides Interface with PLC/Robot Controller
1.3 N3 Power Unit Components

The N3 can be broken down into 2 major systems:

- Inverter Engine
- Control (Micro Processors)
1.4 Inverter Engine

The Inverter Engine can also be broken down into 2 components:

Secondary Side
- Low Voltage – High Current
- Diode Pack (Rectifier)
- Filter Capacitors
- Pilot Circuit
- Output SCR

Primary Side
- High Voltage Rectifier
- Storage Capacitors
- IGBT's (high voltage transistors)
- Snubbers (noise filter)
- High Frequency Transformer
1.5 **Micro Processor**

A typical N3 System has 4 micro processor and 1 additional processor for each output that is added to a system. The CPU’s communicate to one another via a CAN Bus network.

- **Power Unit Control Card** has 2 CPU’s
- **FSE Feeder Control Card** has 1 CPU
- **HMI Control Card** has 1 CPU
1.6 Power Unit Control Card

Micro Processor Functions:

CCPU Functions
- Communication with external I/O
- Management of Weld Programs
- Transfer of Set Points and Control Variables
- Management of PLC/Robot interface

ICPU Functions
- Weld Current and Power Management
- Three Phase Voltage monitoring
- Process Data Management
- Error Flag Generation
1.7 **FSE Feeder Control Card**

Micro Processor Functions:

- Management of pneumatic valves for stud transportation and optional equipment
- Monitors external I/O of prox, lamps and switches
- Transfer of speed and positioning variables to Servo controller
- Transfer of process data variables for Arc Voltage and Servo Movement to ICPU
- Controls triggering of Output SCR
1.8 HMI Control Card

Micro Processor Functions:

HCPU Functions
- User Data Input for Weld Programs and System Configuration settings
- Text and Graphical representation of Weld Process values
- Management of System Errors and Warnings
- Manual control of System Components
- System Diagnostic Tools
1.9 **FSE 100 Feeder Functions**

- Management of Stud Transportation to Weld Tool
- Stud level Control
- Pneumatic and Optional Device Control
- Weld Tool Management
- Networking Additional Outputs
1.10 System Architecture
2. Wrong Stud Error

- **Stud in the chuck?**
 - **Y**
 - STUD out of feeder
 - **N**
 - Chuck Problem
 - Too tight
 - Too loose/soft
 - Burned
 - Out of chuck
 - **Y**
 - Stud Jam
 - Loading pin problem
 - Air pressure is low
 - **N**
 - Feeding Problem
 - Feeder e.g. Lift arm, escapement
 - Tube connection; condition
 - Stud receptor
 - Loading pin
 - Timing of feeding
 - Air pressure Low
 - Wrong/Bad stud
 - Stud selector

REFERENCE
- Actual position out of range
 - (Range = Ref ± tol.)
 - Stud dimension problem
 - Work piece moving
 - New teach point at robot or after touch-up
 - Gap stud

PUSH-TEST or PUSH-TEST++
- Stud dimension problem
- Only with this stud
- Chuck too strong or gauging
- Work piece is moving
- Gap stud or loading pin

ISOLATION TUBE
- Contact during first drive speed phase
 - Stud on top of a welded stud
 - e.g. 1) Pilot arc welded stud temporarily
 - 2) Operator Retry of NI0 Weld

Troubleshooting Guide
Stud welding unit N3
As of: 29.11.2007
2.1 Feeding Problem

Possible Causes:

- Feeder e.g. lift arm escapement
- Tube connection, condition
- Stud receptor
- Loading pin
- Timing of loading
- Air pressure low
- Wrong/Bad stud
- Stud selector
2.2 **Studs builds up on the side walls of FSE 100**

Symptom:
- Lifting arm scoops up nothing because all the studs are on the sides and out of the reach of the lifting arm

Solutions:
- Open up air valve to vibrate feeder to shake FSE 100 every time you feed a stud
- Adjust the "minimum switch level" (inside of sorting container), up is possible, to increase the quantity of studs in this chamber.
 - Reason: With more studs in this chamber, together they became heavier and with this, more easily to fall down to the arm.
- Increase the speed in arm when it move to (back or home) position.
 - Reason: With more speed in arm movement, the feeder has a tendency to vibrate. You can also do that when the arm come to the front position, but you must take care to the studs don’t throw from the arm.
2.3 Chuck Problem

Possible Causes:

- Too tight
- Too loose / soft
- Finger lost
- Burned
2.4 Referenz Methode

Note:
- Actual position out of range (Range = Ref. ± tolerance)

Possible Causes:
- Stud dimension problem
- Workpiece moving
- New teach point at robot or after touch-up
- Gap stud / Loading pin
2.5 Push Test / Push Test ++

Possible Causes:

- Stud dimension problem
- Only with this stud (welcher?)
- Chuck too strong or gauging
- Gap stud / Loading pin
Troubleshooting Guide
Stud welding unit N3
As of: 29.11.2007

Move the stud towards work

NO
Contact detected?
YES
Move away from work

Contact detected?
YES
NO
Stop and hold position

Start “Before Weld Timer” typically 50 ms

Contact detected?
NO
YES
Move away from work

Timer times out?
NO
YES
Move towards work

Contact detected?
NO
YES
Record lift start position

Start pilot arc; lift/plunge drawn-arc stud welding cycle

Push ++ Workpiece Detection
2.6 Isolation Tube

Note:
- Contact during “first drive speed phase”

Possible Causes:
- Stud on the top of a welded stud e.g.:
 - Pilot arc welded stud temporarily
 - Operator retry of NIO welding
2.7 No Contact Error

Possible Causes:

- No Contact (distance between Head and Work piece)
- No Stud (only with isolation tube)
- External voltage sense lead cable broken or not connected
- External measure cable broken or not connected
- External sense lead cable not connected on feeder board
- Wrong polarity
- Measure cable to head broken or not connected
- Weld Cable wiring
- Feeder board defective
- N3 Control board defective
- Work piece or surface is dirty or with oil contamination
2.8 No Arc

Possible Causes:

- **No lift or no movement head**
- **Work piece moving against stud**
- **Short circuit between work piece and stud**
- **Stud temporarily welded with pilot current**
- **Lift too short**
- **Inverter defect**
- **CAN-BUS – process data defect**
- **Feeder board problem**
 - **A/D Converter**
 - **Wiring on board**

After turning on the pilot arc for 15 ms, the arc voltage must be over 15V. If not, “no arc” error is active.
2.9 **Contact Light Always "On"**

Possible Causes:

- *Internal weld head weld cable shorted to ground (housing)*
- *T-stud feeder only: Output SCR has bad isolation to housing*
- *Bad (shorted) output diode*
- *Weld head not retracted*
2.10 Arc Voltage Lost

Possible Causes:

- *Lift is too high*
- *Work piece vibration*
- *Dirty work piece (Oil)*
- *Air blowing at arc*
 - 15 ms after pilot arc start, measure 4ms (16 samples)
 - Average voltage should be > 75 V
2.11 Weld Cycle interrupted

Start signal from robot is dropped before weld complete (FK) is sent to robot. This could be caused by robot using Spot Welding Software (e.g. Fanuc Spot Tool) for stud welding

IN THE EVENT OF NIO WELD:

Work-Around (Temporarily suppressing this error)

Set NIO Count to zero \(\Rightarrow\) ‘FK’ is sent for NIO weld
2.12 Safety Circuit Error

Possible Causes:

- User panel switch is “off”
- Safety gate or light screen is tripped
- Feeder daisy-chain termination plug is not inserted either in the feeder or in the N3
- External safety device problem or its wiring
2.13 Low Current NIO Error in Process Monitor

Possible Causes:

1. Weld cable voltage drop is too high
 - Weld cable diameter is too high
 - Weld cable length is too long
 - Too many connections, loose connections or bad connections
 - Chuck is not tight (fixed)
 - Grounding to workpiece is not solid

2. Inverter engine is bad (output diode or IGBT)
 - To check N3 terminal voltage:
 - Flip dip switch to use internal voltage measurement as display to process monitor
 - Use oscilloscope or data acquisition device to measure output voltage during a weld

3. Input voltage is unstable (too low), or input cable is too long or too small Ø

4. Bad main relay contact
2.14 **NIO ARC Voltage**

Possible Causes:

1. **Work piece surface is dirty - arc voltage is too high**

2. **Molten metal bridging stud to work piece during main arc** (Check: Process Monitor arc voltage curves for short circuit)
 - Current is too high (voltage is too low) for the application
 - Lift is not enough
 - Weld time is too long and weld current is too low, causing short circuit
2.15 Error in Gun / Head Movement

Time out movement, head not retracted

1. No/Low air pressure

2. Gun cable or its connection

3. Servo axis is blocked
 - Stud jam
 - Feed tube is not secured to the head. If moves and blocks the axis
 - To check:
 ➢ Release break
 ➢ Move weld axis by hand
 ➢ Check LED (encoder pulses) flashing on the feeder board
 ➢ In software version 2, the axis position is displayed on the user panel when break is released

4. Feeder board: 90V fuse is blown
2.16 Head not retracted Position

Possible Causes:

1. Proximity switch is loose
2. Axis is blocked
3. Cable from head to feeder is damaged
4. Low air pressure
5. Chuck is welded to work piece
6. Stud in the loading head blocks the movement
7. Protective bellow is not installed properly or has no bleed hole
8. Spatter holds the chuck to the stud after welding
2.17 Current Level error

1. Output cable has too much inductance
 - Uncoil cable
 - Keep weld cable away from ferrous material

2. N3 inverter engine failed – e.g. output diode failed
2.18 Can Bus Error

Possible Causes:

1. **CAN connector on each board**
2. **CAN termination plug is missing on the last feeder in the DAISY-Chain**
3. **One feeder is disconnected without cycle power**
4. **Bad CAN cable**
5. **Feeder board or control board is damaged**
6. **45V CAN Bus power supply will see error message**
7. **CAN I & CAN II positions are swapped on feeder PCB on control PCB**
3. Components

<table>
<thead>
<tr>
<th>Major Components</th>
<th>Failure Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change / Discharge PCB</td>
<td>- No current</td>
</tr>
<tr>
<td></td>
<td>- Long discharge time</td>
</tr>
<tr>
<td></td>
<td>- Main switch (relay can be wounded)</td>
</tr>
<tr>
<td>IGBT or IGBT driver</td>
<td>- No current</td>
</tr>
<tr>
<td></td>
<td>- Low output current, if half side is working</td>
</tr>
<tr>
<td>Main relay</td>
<td>- Irregular current waveform (ripple); only at high weld current</td>
</tr>
<tr>
<td></td>
<td>- NIO current</td>
</tr>
<tr>
<td>Output diode</td>
<td>- Low current at high weld current</td>
</tr>
<tr>
<td></td>
<td>- Bad smell (right side of housing black soot)</td>
</tr>
<tr>
<td>Main switch</td>
<td>- Tripping</td>
</tr>
<tr>
<td>Main transformer</td>
<td>- No current</td>
</tr>
<tr>
<td></td>
<td>- Low current</td>
</tr>
<tr>
<td>Capacitor for DC BUS</td>
<td>- Irregular current waveform</td>
</tr>
<tr>
<td>Feeder PCB</td>
<td>- CAN BUS error</td>
</tr>
<tr>
<td></td>
<td>- No movement</td>
</tr>
<tr>
<td></td>
<td>- Communication error</td>
</tr>
<tr>
<td></td>
<td>- 7-Segment stopper</td>
</tr>
<tr>
<td></td>
<td>- CAN BUS adress</td>
</tr>
<tr>
<td>Control PCB</td>
<td>- 7-Segment not running on CoCP</td>
</tr>
<tr>
<td>IGBT snubber</td>
<td>- NIO current</td>
</tr>
<tr>
<td></td>
<td>- Error message</td>
</tr>
<tr>
<td></td>
<td>- 15V supply for IGBT drive current</td>
</tr>
</tbody>
</table>
4. Fuse Problems

4.1 Fuse in Feeder is blown (90V)

Possible Error Messages:

- Movement timeout
- Power supply 90V

Check:

- Voice coil in the head is burned up
- Head cable is damaged
- Feeder board is damaged (servo amplifier has a short circuit)
- Wrong Fuse (e.g. low rating, fast blow)
4.2 Fuse (F1, F2, F3) in N3 power supply board are blown

Note:

- 3 phase head/gun supply - ERROR MESSAGE:
- 90V power supply on the AC side

Check:

- *If hand gun is used, gun coil is shorted*
- *Gun cable has short circuit*
- *If multiple guns are used, they move at the same time, causing overload on 90V power supply*
4.3 Fuse (F4, F5, F6) in N3 power supply board are blown

Note:
- 24V power supply on the AC side (for: feeder, user panel, main relay, safety circuit and internal to N3)

Symptoms:
- User panel has no power
- Control board has no power

Causes:
- Rectifier has short circuit
- DC/DC converter has short circuit
4.4 **Fuse (F 10) in N3 power supply board is blown**

Note:
- 24V power supply for feeder, NTC Box, user panel (external to N3)

Symptoms:
- User panel is not powered up
- Feeder is no powered up

Causes:
- Short circuit in feeder, NTC-Box, User panel
- Wiring to external devices
4.5 **Fuse (F 11) in N3 power supply board is blown**

Note:
- 24V power supply for N3 (internal use)

Symptoms:
- User panel is powered on, but with “waiting” message
- LED on control board is off
- 7 – Segment display is not rotating

Causes:
- Short circuit in DC/DC converter on power supply board
- Short circuit on control board
4.6 **Fuse (F 12) in N3 power supply board is blown**

Note:

- 90V supply on the PC side

Check:

- *If hand gun is used, gun coil is shorted*

- *Gun cable has short circuit*

- *If multiple guns are used, they move at the same time, causing overload on 90V power supply*
4.7 F1 in Inverter Module

Note:
- 170A on input voltage primary side

Symptom:
- No weld current

Causes:
- IGBT (part number 86-02-85)
- IGBT snubber network (part number 66-08-22)
- IGBT driver board (part number 66-06-59)
5. Error Messages

5.1 Error Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Priority</th>
<th>Acknowledgement required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low</td>
<td>No</td>
<td>Warning</td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
<td></td>
<td>Error</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td></td>
<td>Error; parts of the stud welding system switched off</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>Yes</td>
<td>Serious error; flawless operation of the N3 stud welding system not possible! The power supply unit is switched off.</td>
</tr>
</tbody>
</table>
5.2 Error List

<table>
<thead>
<tr>
<th>System errors</th>
<th>Information 1</th>
<th>Information 2</th>
<th>Information 3</th>
<th>Class</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>System reset</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>Error FT-RAM</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x02</td>
</tr>
<tr>
<td>Error LP-RAM</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x03</td>
</tr>
<tr>
<td>Error DP-RAM</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x04</td>
</tr>
<tr>
<td>DP-RAM not initialised</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x05</td>
</tr>
<tr>
<td>DP-RAM watchdog</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x06</td>
</tr>
<tr>
<td>No configuration data</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0x07</td>
</tr>
<tr>
<td>System interrupt</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x08</td>
</tr>
<tr>
<td>No communication operating panel</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0x09</td>
</tr>
<tr>
<td>Error inverter card</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x0A</td>
</tr>
<tr>
<td>Error bus addresses</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x0B</td>
</tr>
<tr>
<td>No EEPROM data</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x0C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware errors</th>
<th>Information 1</th>
<th>Information 2</th>
<th>Information 3</th>
<th>Class</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line contactor OFF</td>
<td></td>
<td></td>
<td>Error information</td>
<td>2</td>
<td>0x10</td>
</tr>
<tr>
<td>Protective grid open!</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0x11</td>
</tr>
<tr>
<td>Switch protective grid bridging</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0x12</td>
</tr>
<tr>
<td>Temperature</td>
<td>Error information</td>
<td></td>
<td></td>
<td>3</td>
<td>0x13</td>
</tr>
<tr>
<td>Phase failure</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0x14</td>
</tr>
<tr>
<td>Error power supply unit</td>
<td></td>
<td>Error information</td>
<td></td>
<td>3</td>
<td>0x15</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Information 1</td>
<td>Information 2</td>
<td>Information 3</td>
<td>Class</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>SPI bus!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Battery undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Protective relay open</td>
<td>Outp. 1, ...</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Short-circuit/overload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>No voltage supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Parameter errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No welding program</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>0</td>
<td>0x20</td>
</tr>
<tr>
<td>Data pool welding program full</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Write error configuration data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Welding cycle errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI O weld</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>1</td>
<td>0x30</td>
</tr>
<tr>
<td>No contact</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>0</td>
<td>0x31</td>
</tr>
<tr>
<td>Current threshold!</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>1</td>
<td>0x32</td>
</tr>
<tr>
<td>Arc break</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>0</td>
<td>0x33</td>
</tr>
<tr>
<td>No arc</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>0</td>
<td>0x34</td>
</tr>
<tr>
<td>Welding cycle interrupted</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>0</td>
<td>0x35</td>
</tr>
<tr>
<td>Synchronisation error</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>1</td>
<td>0x36</td>
</tr>
<tr>
<td>Welding process active</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>1</td>
<td>0x37</td>
</tr>
<tr>
<td>Error welding process</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>1</td>
<td>0x38</td>
</tr>
<tr>
<td>Timeout welding process</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>1</td>
<td>0x39</td>
</tr>
<tr>
<td>No measuring data</td>
<td>Outp. 1, ...</td>
<td>Type 1, ...</td>
<td>Prog. 1, ...</td>
<td>0</td>
<td>0x3A</td>
</tr>
<tr>
<td>Plunge obstruction</td>
<td>Outp. 1, ...</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Failure protective gas</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td>Information 2</td>
<td>Information 3</td>
<td>Class</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>Simulation</td>
<td>Outp. 1, ...</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Infeed errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No R-position</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>No V-position</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Timeout infeed</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Error infeed</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Angular position NIO</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Welding tool errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo controller defective</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Servo init. faulty</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Servo error input</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Servo overload current</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Feeder errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail filling level min.</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Feeder filling level min.</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bunker filling level min.</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Feeder cover open</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Lack of compressed air</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Feeder key switch</td>
<td>Outp. 1, ...</td>
<td>Information 1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Feed errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Output 1, ...</td>
<td>Code 1</td>
<td>Code 2</td>
<td>Code 3</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>No stud fed</td>
<td></td>
<td>1</td>
<td>0x70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect stud</td>
<td></td>
<td>0</td>
<td>0x71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed fault intelligent stud feed</td>
<td></td>
<td>1</td>
<td>0x72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed fault loading pin</td>
<td></td>
<td>1</td>
<td>0x73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed fault optical sensor</td>
<td></td>
<td>1</td>
<td>0x74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed position selector</td>
<td></td>
<td>1</td>
<td>0x75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stud feed protective circuit open</td>
<td></td>
<td>2</td>
<td>0x76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error stud/prog. allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No welding component delivered</td>
<td></td>
<td>1</td>
<td>0x7A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error separation</td>
<td></td>
<td>1</td>
<td>0x7B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAN errors

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Information 1</th>
<th>Information 2</th>
<th>Information 3</th>
<th>Class</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN message faulty</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0x80</td>
</tr>
<tr>
<td>CAN message timeout</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0x81</td>
</tr>
<tr>
<td>CAN transmission FIFO full!</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0x82</td>
</tr>
<tr>
<td>CAN 1 bus error</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0x83</td>
</tr>
<tr>
<td>CAN 1 bus error bus OFF</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0x84</td>
</tr>
<tr>
<td>CAN 1 bus error</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0x85</td>
</tr>
<tr>
<td>CAN 1 bus error</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0x86</td>
</tr>
<tr>
<td>CAN 2 bus error</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0x87</td>
</tr>
<tr>
<td>CAN 2 bus error bus OFF</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0x88</td>
</tr>
<tr>
<td>CAN 2 bus error</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0x89</td>
</tr>
<tr>
<td>CAN 2 bus error</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0x8A</td>
</tr>
</tbody>
</table>
5.3 **Internal Errors Feeder**

<table>
<thead>
<tr>
<th>Error</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage 90 V servo</td>
<td>0xE0</td>
</tr>
<tr>
<td>Voltage 15 V driver servo</td>
<td>0xE1</td>
</tr>
<tr>
<td>Voltage 5 V interface</td>
<td>0xE2</td>
</tr>
<tr>
<td>Voltage 5 V CAN</td>
<td>0xE3</td>
</tr>
<tr>
<td>Voltage 24 V</td>
<td>0xE4</td>
</tr>
</tbody>
</table>
6. Hardware Errors Code 0x10-0x1F

6.1 Code: 0x10 Line contactor OFF!

| Line contactor OFF! | Code: 0x10 |

Description:
- The line contactor is switched off and the voltage supply of the power section and the external system components (feeder, adjustment control tack gripper, etc.) has been interrupted.
6.2 Code: 0x11 Protective grid open

| Protective grid open! | Code: 0x11 |

Description:
- The protective grid circuit is open and the voltage supply for the external system components has been interrupted. An active welding process will be executed until the next process stage. An active feed process will be terminated.

Possible Causes:

1. *User panel switch is “off”*
2. *Safety gate or light screen is tripped*
3. *Feeder daisy-chain termination plug is not inserted either in the feeder or in the N3*
4. *External safety device problem or its wiring*
6.3 Code: 0x12 Switch protective grid

| Switch protective grid! | Code: 0x12 |

Description:
- **The operator protection** activated by the open protective circuit, **has been** disabled via the key switch at the N3. This, for example, facilitates welding head feed, stud feed, etc.
6.4 **Code: 0x13 Temperature too high!**

<table>
<thead>
<tr>
<th>Temperature too high!</th>
<th>Code: 0x13</th>
</tr>
</thead>
</table>

Description:
- The maximum temperature of the circuit part or component specified in Information 1 has been exceeded.

The code listed in the Information 1 column indicates the module.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control transformer</td>
</tr>
<tr>
<td>2</td>
<td>Welding transformer</td>
</tr>
<tr>
<td>3</td>
<td>Pilot current choke</td>
</tr>
<tr>
<td>4</td>
<td>Output thyristor</td>
</tr>
<tr>
<td>5</td>
<td>Power section primary side</td>
</tr>
<tr>
<td>6</td>
<td>Power section secondary side</td>
</tr>
<tr>
<td>7</td>
<td>Printed circuit board CoCP/InCP</td>
</tr>
</tbody>
</table>
6.5 Code: 0x14 Phase under voltage!

<table>
<thead>
<tr>
<th>Phase under voltage!</th>
<th>Code: 0x14</th>
</tr>
</thead>
</table>

Description:
- One or more volt phases are not detected or missing in the mains input circuit of the N3.

Causes:
- Loose or bad connection
- Bad contacts on main disconnect
- Bad winding or connection on control transformer
- Open multi-fuse F7, F8, F9
- Bad connection between power supply board and control board
- Damaged control board
• Check 400 or 480 Volt for all three phases at L1, L2, L3 input power connection

• Check 400 or 480 Volt for all three phases at K1 main relay input side – Main disconnect is ok

• Disconnect X303 and check for 10 Volt on pins 9-10,11-12,13-14 – Control transformer is ok

• Power off and remove control card. Do a continuity check between pins 9 on X303 and pins 32c on X320, 10 to 32a, 11 to 31c, 12 to 31a, 13 to 30c and 14 to 30a – Multi-fuses are ok

• Check male pins on control card. If ok then replace circuit board.
6.6 **Code: 0x15 Power supply unit error!**

<table>
<thead>
<tr>
<th>Power supply unit error!</th>
<th>Code: 0x15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:
- The code listed in the Information 1 column indicates the module.
- One or more power supply voltages are not detected
- The code listed in Information 1 indicates the cause of the error.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temporary fault</td>
</tr>
<tr>
<td>2</td>
<td>Phase failure L1</td>
</tr>
<tr>
<td>3</td>
<td>Phase failure L2</td>
</tr>
<tr>
<td>4</td>
<td>Phase failure L3</td>
</tr>
<tr>
<td>5</td>
<td>Voltage failure 15V IGBT driver card</td>
</tr>
<tr>
<td>6</td>
<td>Voltage failure CAN supply operating panel</td>
</tr>
<tr>
<td>7</td>
<td>Voltage failure CAN supply Feeder</td>
</tr>
<tr>
<td>8</td>
<td>Voltage failure work piece contacting/contact detection</td>
</tr>
</tbody>
</table>

Causes:
- Open fuses on power supply board
- Faulty dc/dc converters
- Poor connection between power supply board and control board
- Faulty control board
Solutions:

- Code 1 temporary fault (surge was detected on power up)

- Cycle power, if fault returns then check input voltage

- Code 2, Code 3, Code 4 see phase failure

Code 5 Voltage loss 15V IGBT driver card

- Open back door on N3 and look for the green LED H1 and H2 on the IGBT driver board. If this on then the power supply board and IGBT board are ok.

- If not on check fuses F4, F5, F6 on power supply board and connection between X302 on the power supply board and X102 on IGBT driver board. If fuses and connection is ok then replace power supply board.

- Check connection between X101 on IGBT board and X201 on control board.

- Replace control board.
Troubleshooting Guide
Stud welding unit N3
As of: 29.11.2007

Code 6-7-8 Voltage loss CAN power supply Control panel- Voltage loss CAN power supply Feeder- Voltage loss Work piece contact/contact detection

- Check for green LED’s H10, H11, H14 on power supply board.
- If off, check fuses F4, F5, F6 and F11
- If fuses are ok and no LED’s then check for 30 to 50 vac on connector X303 at pins 6,7,8. If not then replace control transformer.
- If LED’s are on then check that the power supply board and control board connection is seated properly.
- If the boards are seated properly and no bent pins or arcing then replace control board
6.7 **Code: 0x16 SPI-bus!**

<table>
<thead>
<tr>
<th>SPI bus!</th>
<th>Code: 0x16</th>
</tr>
</thead>
</table>

Description:
- An error has occurred on the inverter card (InCP) during communication via the SPI bus.

Note:
- The stud welding system must be switched off and back on again or the printed circuit board has to be replaced!
6.8 **Code: 0x17 Battery undervoltage!**

<table>
<thead>
<tr>
<th>Battery undervoltage!</th>
<th>Code: 0x17</th>
</tr>
</thead>
</table>

Description:
- The battery for data backup (configuration data, welding parameters, etc.) in the N3 indicates an undervoltage.
 - The voltage value is < 2.1 V.

Note:
- The battery has to be replaced! Before replacing the battery, a data backup must be carried out.
6.9 Code: 0x1D Protective circuit relay

| Protective circuit relay! | Code: 0x1D |

Description:
- The two safety relays (K2 and K3) on the power supply board are open

Causes:
- Open circuit in safety hard wiring connections
- System has detected a problem and opened the relays internally
- Damaged K2/K3 relays
- Damaged power supply board transistor due to reverse polarity connection

Solution:
- Open front door of N3 and look on the power supply board for LED’s H18,H19,H32 to see if they are lit yellow, this will determine if it is internal or external or a bad relay

![Diagram of N3 power supply board with LED identifiers H18, H19, H32]
Safety Circuit:
6.10 **Code: 0x1E Short-circuit / overload!**

<table>
<thead>
<tr>
<th>Short-circuit / overload!</th>
<th>Code: 0x1E</th>
</tr>
</thead>
</table>

Description:
- An overload or short-circuit has occurred in the circuit of the digital output circuit listed in Information 1. The output circuit is switched off.
- The N3 system has detected a over current circuit on the X3 connection to the feeder.

Causes:
- *Faulty control cable*
- *Faulty feeder circuit board*
- *Mismatch in feeder circuit board version and software version.*
- *Mismatch in feeder software version*

Solution:
- *Replace control cable from N3 to feeder*
- *Check software version on FSE*
Check software version for possible mismatch. The version is located under INFO – SOFTWARE.
6.11 Code: 0x1F No voltage supply!

| No voltage supply! | Code: 0x1F |

Description:

- The voltage supply for a circuit part or component is missing.

Information 1: Indicates the respective output.

Information 2: Indicates the missing voltage supply – refer to Internal Errors.
7. System Errors Code 0x00-0x0F

7.1 Code: 0x01 System Reset!

| Reset! | Code: 0x01 |

Definition:
- The N3 has carried out a restart. The system has stopped and restarted the communication processor. All temporary variables have been deleted.

Cause:
- A manual reset was carried out.
- The watchdog monitoring has caused a reset.
- A new interface configuration has been entered. The system must reboot to establish communication with interface card.
- One or more processors has stopped communicating on the CAN network.

Solutions:
- Quit error and proceed.
- Determine which processor has stopped and replace circuit board.
7.2 **Code: 0x02 Fast ram!**

<table>
<thead>
<tr>
<th>Fast RAM!</th>
<th>Code: 0x02</th>
</tr>
</thead>
</table>

Description:
- During initialisation, the N3 has detected an error while testing the <fast RAM> memory. The test comprises the writing and reading of the memory using special parameters.

Note:
- Operation is not possible. The printed circuit board may have to be replaced.
7.3 Code: 0x03 Low power ram!

<table>
<thead>
<tr>
<th>Low-power RAM!</th>
<th>Code: 0x03</th>
</tr>
</thead>
</table>

Description:
- During initialisation, the N3 has detected an error while testing the `<low-power RAM>`. The test comprises the writing and reading of the memory using special parameters.

Note:
- Operation is not possible. The printed circuit board may have to be replaced.
7.4 **Code: 0x04 Dual port ram!**

<table>
<thead>
<tr>
<th>Dual-port RAM!</th>
<th>Code: 0x04</th>
</tr>
</thead>
</table>

Description:
- During initialisation, the N3 has detected an error while testing the *<dual-port RAM>*.
 - The test comprises the writing and reading of the memory using special parameters.

Note:
- Operation is not possible. The printed circuit board may have to be replaced.
7.5 **Code: 0x05 Dual port ram (init)!**

<table>
<thead>
<tr>
<th>Dual-port RAM (init)!</th>
<th>Code: 0x05</th>
</tr>
</thead>
</table>

Description:
- The N3 has not received any confirmation (feedback) from the inverter CPU during initialisation of the `< dual-port RAM >`. The data exchange between communication CPU and the inverter CPU is faulty.

Note:
- Operation is not possible. The printed circuit board may have to be replaced.
7.6 **Code: 0x06 Dual port ram (Watchdog)!**

<table>
<thead>
<tr>
<th>Dual-port RAM (watchdog)!</th>
<th>Code: 0x06</th>
</tr>
</thead>
</table>

Description:
- The data exchange between the communication CPU and the inverter CPU is not flawless, the timeout condition has expired.

Note:
- The N3 must be restarted via a manual reset or by switching it off and back on again.
7.7 **Code: 0x07 No configuration data!**

<table>
<thead>
<tr>
<th>No configuration data!</th>
<th>Code: 0x07</th>
</tr>
</thead>
</table>

Description:
- During initialization, the N3 has detected that invalid configuration data or no configuration data at all are available. The memory for the configuration data has been deleted and then filled with default values.
- The system detects devices connected on the CAN network but there is no information in the configuration file.

Note:
- The stud welding system must be re-configured!

Causes:
- *Battery backup has failed during power off*
- *A component has been added or removed from the system.*

Solutions:
- *Replace battery and restore system configuration information*

- Enter Weld Unit Data
 - Language
 - Date
 - Time
- Enter Interface Data
- Enter Output Data
 - Weld tool
 - Feeder type (comp data)
7.8 Code: 0x08 System IRQ (error!!!)

| System IRQ (error!!!) | Code: 0x08 |

Description
- An unauthorised interruption has been caused by a hardware or software error.

Note:
- The N3 must be restarted via a manual reset or by switching it off and back on again.
7.9 **Code: 0x09 No communication with user panel**

<table>
<thead>
<tr>
<th>No communication with user panel</th>
<th>Code: 0x09</th>
</tr>
</thead>
</table>

Description:
- The data exchange via the CAN bus between the communication CPU and the operating panel of the N3 has been interrupted or is faulty.
- Data on the CAN network to user panel has stopped.

Causes:
- *Damaged user panel*
- *Faulty cable between N3 front door and power supply board*
- *Missing 5 volt power supply*
- *Incorrect software version on user panel processor*

Solutions:
- *Replace user panel*
- *Check cable between front door and power supply board connection X309 for continuity*
- *Check pins on X309 for arcing*
- *Replace power supply circuit board (66-06-60)*
• Check software version for possible mismatch. The version is located under INFO – SOFTWARE. If mismatch in software, then flash correct version on panel. (see attached flash instructions)
7.10 Code: 0x0A Inverter card!

| Inverter card! | Code: 0x0A |

Description:
- The N3 has detected an error on the inverter card. Flawless operation is no longer assured.
7.11 **Code: 0x0B Bus address!**

<table>
<thead>
<tr>
<th>Bus address!</th>
<th>Code: 0x0B</th>
</tr>
</thead>
</table>

Description:
- The address assignment of the connected system components is faulty. Flawless operation via the control bus is no longer assured.

Note:
- A system component address may have been configured doubly.
7.12 **Code: 0x0C No EEPROM data!**

<table>
<thead>
<tr>
<th>No EEPROM data!</th>
<th>Code: 0x0C</th>
</tr>
</thead>
</table>

Description:
- During initialisation, the N3 unit has detected that no data is available in the EEPROM (e.g. layout version, manufacturer identity, etc.). The EEPROM has been pre-configured with standard values.

Note:
- The stud welding unit must be re-configured!
8. Parameter Errors Code 0x20-02F

8.1 Code: 0x20 No welding program!

| No welding program! | Code: 0x20 |

Description:
- No welding program (data record) has been created for the selected welding program.

 Information 1: Welding output
 Information 2: Type identity
 Information 3: Welding program number
8.2 Code: 0x21 Data pool welding programs full!

| Data pool welding programs full! | Code: 0x21 |

Description:
- The welding program memory is full!

Note:
- Delete unused welding programs.
8.3 Code: 0x22 Write error configuration data!

| Write error configuration data! | Code: 0x22 |

Description:
- Currently not implemented!
9. Welding Cycle Errors Code 0x30-0x3F

9.1 Code: 0x30 NIO weld!

| NIO weld! | Code: 0x30 |

Description:
- A suspicious weld is pending for the specified welding program.

 Information 1: Indicates the respective welding output.

 Information 2: Indicates the respective type identity.

 Information 3: Indicates the welding program number

Possible Causes:

1. Work piece surface is dirty - arc voltage is too high

2. Molten metal bridging stud to work piece during main arc (Check: Process Monitor arc voltage curves for short circuit)
 - Current is too high (voltage is too low) for the application
 - Lift is not enough
 - Weld time is too long and weld current is too low, causing short circuit
9.2 **Code: 0x31 No contact!**

<table>
<thead>
<tr>
<th>No contact!</th>
<th>Code: 0x31</th>
</tr>
</thead>
</table>

Description:
- No work piece contacting (contact) upon welding start.

Information 1: Indicates the respective welding output.

Information 2: Indicates the respective type identity.

Information 3: Indicates the welding program number

Possible Causes:

1. No Contact *(distance between Head and Work piece)*
2. No Stud *(only with isolation tube)*
3. External voltage sense lead cable broken or not connected
4. External measure cable broken or not connected
5. External sense lead cable not connected on feeder board
6. Wrong polarity
7. Measure cable to head broken or not connected
8. Weld Cable wiring
9. Feeder board defective
10. N3 Control board defective
11. Work piece or surface is dirty or with oil contamination
9.3 Code: 0x32 Current threshold

<table>
<thead>
<tr>
<th>Current threshold!</th>
<th>Code: 0x32</th>
</tr>
</thead>
</table>

Description:
- The current threshold has not been reached after the main current phase’s start.

1. **Output cable has too much inductance**
 - Uncoil cable
 - Keep weld cable away from ferrous material

2. **N3 inverter engine failed – e.g. output diode failed**
9.4 **Code: 0x33 Arc voltage lost**

| Arc voltage lost! | Code: 0x33 |

Description:
- The arc broke or went out during the pilot current phase.

 Information 1: Indicates the respective welding output.

 Information 2: Indicates the respective type identity.

 Information 3: Indicates the welding program number.

Note:
- The stroke at the gun or welding head may be too large.

Possible Causes:

1. *Lift is too high*
2. *Work piece vibration*
3. *Dirty work piece (Oil)*
4. *Air blowing at arc*
 - 15 ms after pilot arc start, measure 4ms (16 samples)
 - *Average voltage should be > 75 V*
9.5 **Code: 0x34 No arc!**

<table>
<thead>
<tr>
<th>No arc!</th>
<th>Code: 0x34</th>
</tr>
</thead>
</table>

Description:
- No arc could be ignited during the pilot current phase.

 Information 1: Indicates the respective welding output.
 Information 2: Indicates the respective type identity.
 Information 3: Indicates the welding program number

Note:
- Possibly no stroke at the gun or welding head.

Possible Causes:

1. *No lift or no movement head*
2. *Work piece moving relative to stud*

 Fixtime is not supporting workpiece adequately causing workpiece vibration after stud is lifted off the workpiece.
 1. *a Workpiece is too thin in thickness*
 2. *b Fixtime a clamp is loose*
3. Short circuit between work piece and stud

4. Stud temporarily welded with pilot current

5. Lift too short

6. Inverter defect

7. CAN-BUS – process data defect

8. Feeder board problem
 - A/D Converter
 - Wiring on board

After turning on the pilot arc for 15 ms, the arc voltage must be over 15V. If not, “no arc” error is active.
9.6 **Code: 0x35 Welding cycle interrupted!**

<table>
<thead>
<tr>
<th>Welding cycle interrupted!</th>
<th>Code: 0x35</th>
</tr>
</thead>
</table>

Description:
- The welding sequence has been interrupted, i.e. the start signal is switched off. The welding sequence has not been completed!

 Information 1: Indicates the respective welding output.

Note:
- This message is generated when the start signal is switched off before the FK signal.

Start signal from robot is dropped before weld complete (FK) is sent to robot. This could be caused by robot using Spot Welding Software (e.g. Fanuc Spot Tool) for stud welding

IN THE EVENT OF NIO WELD:

![Diagram showing flow of signals between N3 User Panel and Robot Panel.](image)

Recommended Robot Programming

Work-Around (Temporarily suppressing this error)

- Set NIO Count to zero → ‘FK’ is sent for NIO weld
9.7 Code: 0x36 Synchronisation error!

<table>
<thead>
<tr>
<th>Synchronisation error!</th>
<th>Code: 0x36</th>
</tr>
</thead>
</table>

Description:

- Currently not implemented!
9.8 Code: 0x37 Welding process active!

| Welding process active! | Code: 0x37 |

Description:
- Currently not implemented!
9.9 **Code: 0x38 Welding process error!**

<table>
<thead>
<tr>
<th>Welding process error!</th>
<th>Code: 0x38</th>
</tr>
</thead>
</table>

Description:
- Currently not implemented!
9.10 **Code: 0x39 Timeout welding process !**

<table>
<thead>
<tr>
<th>Timeout welding process!</th>
<th>Code: 0x39</th>
</tr>
</thead>
</table>

Description:
- Currently not implemented !
9.11 **Code: 0x3A No measured values!**

| No measured values! | Code: 0x3A |

Description:
- The N3 has no measured values.
9.12 **Code: 0x3B Plunge obstruction!**

<table>
<thead>
<tr>
<th>Plunge obstruction!</th>
<th>Code: 0x3B</th>
</tr>
</thead>
</table>

Description:
- The mechanically adjusted protrusion of the stud compared to the supporting tube is smaller than the plunge depth configured in the welding program.

 Information 1: Indicates the respective output.

Note:
- A larger protrusion should be adjusted as, otherwise, no sound welding quality can be assured.
9.13 Code: 0x3C Protective gas failure

| Protective gas failure! | Code: 0x3C |

Description:
- A protective gas failure has occurred.

Information 1: Indicates the respective output.
9.14 **Code: 0x3D Simulation**

<table>
<thead>
<tr>
<th>Simulation!</th>
<th>Code: 0x3D</th>
</tr>
</thead>
</table>

Description:
- Simulation active.

Information 1: Indicates the respective output.
10. Infeed Errors Code 0x40-0x4F

10.1 Code: 0x40 No R-position!

<table>
<thead>
<tr>
<th>No R-position!</th>
<th>Code: 0x40</th>
</tr>
</thead>
</table>

Description:
- The welding head is **not** in the home position or could not be driven to the backward position.

Information 1: Indicates the respective output.

Possible Causes:

1. Proximity switch is loose
2. Axis is blocked
3. Cable from head to feeder is damaged
4. Low air pressure
5. Chuck is welded to work piece
6. Stud in the loading head blocks the movement
7. Protective bellow is not installed properly or has no bleed hole
8. Spatter holds the chuck to the stud after welding
10.2 **Code: 0x41 No V-position!**

<table>
<thead>
<tr>
<th>No V-position!</th>
<th>Code: 0x41</th>
</tr>
</thead>
</table>

Description:

- The welding head could not be driven to the forward welding position.

Information 1: Indicates the respective output.
10.3 **Code: 0x42 Timeout infeed!**

| Timeout infeed! | Code: 0x42 |

Description:
- The maximum time for the welding shaft's movement from the backward to the forward position or vice versa was exceeded.

Information 1: Indicates the respective output.
10.4 Code: 0x43 Infeed error!

<table>
<thead>
<tr>
<th>Infeed error</th>
<th>Code: 0x43</th>
</tr>
</thead>
</table>

Description:
- The welding shaft could not be fed properly after 3 attempts. The cause is indicated by the additionally indicated error.

 Information 1: Indicates the respective output.

 Information 2: Indicates the error cause.

Time out movement, head not retracted

1. *No/Low air pressure*

2. *Gun cable or its connection*

3. *Servo axis is blocked*
 - Stud jam
 - Feed tube is not secured to the head. If moves and blocks the axis
 - To check:
 - Release break
 - Move weld axis by hand
 - Check LED (encoder pulses) flashing on the feeder board
 - In software version 2, the axis position is displayed on the user panel when break is released

4. *Feeder board: 90V fuse is blown*
10.5 **Code: 0x4A Angular position NIO**

<table>
<thead>
<tr>
<th>Angular position NIO</th>
<th>Code: 0x4A</th>
</tr>
</thead>
</table>

Description:
- The angular position of the PSE hand-held gun is not given.

 Information 1: Indicates the respective welding output.

 Information 2: Indicates the respective type identity.

 Information 3: Indicates the welding program number
11. Welding Tool Errors Code 0x50-0x5F

11.1 Code: 0x50 Servo controller defective!

| Servo controller defective! | Code: 0x50 |

Description:
- The servo drive (linear motor) of the welding shaft is faulty and has been switched off.

Information 1: Indicates the respective output.
11.2 Code: 0x51 Servo init. faulty!

<table>
<thead>
<tr>
<th>Servo init. faulty!</th>
<th>Code: 0x51</th>
</tr>
</thead>
</table>

Description:
- Initialisation of the servo system is not possible!

Information 1: Indicates the respective output.
11.3 **Code: 0x52 Servo error input!**

| Servo error input! | Code: 0x52 |

Description:
- The error input of the servo system is active!

Information 1: Indicates the respective output.
11.4 Code: 0x53 Servo overload current!

| Servo overload current! | Code: 0x53 |

Description:
- The current consumption was too high over a lengthy period of time.

Information 1: Indicates the respective output.
12. Feeder Errors Code 0x60- 0x6F

12.1 Code: 0x60 Rail filling level min.!

Description:
- The stud rail of the FSE xx feeder is empty or the initiator has not been attenuated.

Information 1: Indicates the respective output.
12.2 Code: 0x61 Feeder filling level min.!

| Feeder filling level min.! | Code: 0x61 |

Description:
- The filling level of the Feeder pot of the FSE xx Feeder has been underrun or the initiator has not been attenuated.

Information 1: Indicates the respective output.
12.3 Code: 0x62 Bunker filling level min.!

| Bunker filling level min.! | Code: 0x62 |

Description:

- The bunker filling level of the FSE xx Feeder has been underrun or the initiator has not been attenuated.

 Information 1: Indicates the respective output.
12.4 Code: 0x63 Feeder cover open!

<table>
<thead>
<tr>
<th>Feeder cover open!</th>
<th>Code: 0x63</th>
</tr>
</thead>
</table>

Description:

- The Feeder cover of the FSE xx Feeder is open. Operation of the sorting blade is prevented.

Information 1: Indicates the respective output.
12.5 Code: 0x64 Lack of compressed air!

<table>
<thead>
<tr>
<th>Lack of compressed air!</th>
<th>Code: 0x64</th>
</tr>
</thead>
</table>

Description:
- The FSE xx Feeder's compressed air supply is lacking or the minimum pressure has been underrun.

Information 1: Indicates the respective output.
12.6 Code: 0x65 Feeder key switch!

<table>
<thead>
<tr>
<th>Feeder key switch!</th>
<th>Code: 0x65</th>
</tr>
</thead>
</table>

Description:
- Currently not implemented!
13. Feed Errors Code 0x70-0x7F

13.1 Code: 0x70 No stud fed!

<table>
<thead>
<tr>
<th>No stud fed!</th>
<th>Code: 0x70</th>
</tr>
</thead>
</table>

Description:
- No stud was fed. The timeout condition for the feed process has expired or the ring sensor has not been activated.

Information 1: Indicates the respective output.

Note:
- A stud may be stuck in the feed system!
13.2 Code: 0x71 Wrong stud!

<table>
<thead>
<tr>
<th>Wrong stud!</th>
<th>Code: 0x71</th>
</tr>
</thead>
</table>

Description:

Stud detection variant: Insertion
- A wrong stud or no stud at all was fed.

Stud detection variant: Reference
- A wrong stud or no stud at all was fed or the work piece lies outside the IO window (IO value).

Information 1: Indications the respective output.
Troubleshooting Guide
Stud welding unit N3
As of: 29.11.2007

Feeding Problem
- Feeder e.g. Lift arm, escapement
- Tube connection; condition
- Stud receptor
- Loading pin
- Timing of feeding
- Air pressure Low
- Wrong/Bad stud
- Stud selector

Feeding Problem
- Feeder e.g. Lift arm, escapement
- Tube connection; condition
- Stud receptor
- Loading pin
- Timing of feeding
- Air pressure Low
- Wrong/Bad stud
- Stud selector

Symptom:
Lifting arm scoops up nothing because all the studs are on the sides and out of the reach of the lifting arm

Solutions:
- Open up air valve to vibrate feeder to shake FSE 100 every time you feed a stud
- Adjust the “minimum switch level” (inside of sorting container), up is possible, to increase the quantity of studs in this chamber.
 - Reason: With more studs in this chamber, together they became heavier and with this, more easily to fall down to the arm.
Increase the speed in arm when it move to (back or home) position.

- Reason: With more speed in arm movement, the feeder has a tendency to vibrate. You can also do that when the arm come to the front position, but you must take care to the studs don't throw from the arm.
Chuck Problem
Referenz Methode
Push Test / Push Test ++

- Isolation Tube
13.3 Code: 0x72 Incorrect stud!

| Feed fault intelligent stud feed! | Code: 0x72 |

Description:
- Incorrect setting of the evaluation electronics of the welding head's light barrier or loading pin not in home position.

Information 1: Indicates the respective output.
13.4 Code: 0x73 Feed fault loading pin!

| Feed fault loading pin! | Code: 0x73 |

Description:
- The loading pin is not in the home or loading position or the timeout condition for the loading pin control has expired.

 Information 1: Indicates the respective output.
13.5 Code: 0x74 Förderstörung optischer Sensor!

| Feed fault optical sensor! | Code: 0x74 |

Description:
- Currently not implemented!
13.6 *ode: 0x75 Feed fault optical sensor!*

<table>
<thead>
<tr>
<th>Feed fault selector!</th>
<th>Code: 0x75</th>
</tr>
</thead>
</table>

Description:
- The selector position is incorrect. No stud can be fed as the separator blocks the feed route.
13.7 **Code: 0x76 Stud feed protective circuit open!**

| Stud feed protective circuit open! | Code: 0x76 |

Description:
- The protective circuit (welding head feed tube limit switch, separation limit switch, if available, Feeder cover) of the feed unit has been interrupted. No new feed process will be executed and any active feed process will be terminated.

 Information 1: Indicates the respective output.
13.8 **Code: 0x77 Stud/program allocation**

<table>
<thead>
<tr>
<th>Stud / program allocation!</th>
<th>Code: 0x77</th>
</tr>
</thead>
</table>

Description:
- The last fed stud does not correspond to the stud type allocated in the welding program.

- *Information 1: Indicates the respective welding output.*
- *Information 2: Indicates the respective type identity.*
- *Information 1: Indicates the respective output.*
14. CAN Errors Code 0x80-0x8F

14.1 Overview CAN BUS Errors

Possible Causes:

1. CAN connector on each board
2. CAN termination plug is missing on the last feeder in the DAISY-Chain
3. One feeder is disconnected without cycle power
4. Bad CAN cable
5. Feeder board or control board is damaged
6. 45V CAN Bus power supply will see error message
7. CAN I & CAN II positions are swapped on feeder PCB on control PCB
14.2 **Code: 0x80 CAN-message faulty!**

| CAN message faulty! | Code: 0x80 |

Description:
- A faulty message was sent during transmission of the CAN messages.
14.3 **Code: 0x81 CAN-Message Timeout!**

<table>
<thead>
<tr>
<th>CAN message timeout!</th>
<th>Code: 0x81</th>
</tr>
</thead>
</table>

Description:
- A timeout condition for an expected CAN message has expired.
14.4 **Code: 0x82 CAN transmission FIFO full!**

<table>
<thead>
<tr>
<th>CAN transmission FIFO full!</th>
<th>Code: 0x82</th>
</tr>
</thead>
</table>

Description:
- The transmission FIFO is full! No further CAN messages can be transmitted.
14.5 **Code: 0x83 CAN 1 bus error!**

<table>
<thead>
<tr>
<th>CAN 1 bus error!</th>
<th>Code: 0x83</th>
</tr>
</thead>
</table>

Description:
- The monitoring unit for CAN bus 1 has detected a line error.
14.6 Code: 0x84 CAN 1 bus OFF!

| CAN 1 bus OFF! | Code: 0x84 |

Description:
- The monitoring unit for CAN bus 1 has switched the bus offline.
14.7 Code: 0x85 CAN 1 bus error!

| CAN 1 bus error! | Code: 0x85 |

Description:
- The monitoring unit for CAN bus 1 indicates that the CAN bus has received several faulty messages. The bus quality is poor!
14.8 **Code: 0x86 CAN 1 bus error!**

<table>
<thead>
<tr>
<th>CAN 1 bus error!</th>
<th>Code: 0x86</th>
</tr>
</thead>
</table>

Description:
- The monitoring unit for CAN bus 1 indicates that an error has occurred.
14.9 **Code: 0x87 CAN 2 bus error!**

| CAN 2 bus error! | Code: 0x87 |

Description:
- The monitoring unit for CAN bus 2 has detected a line error.
14.10 **Code: 0x88 CAN 2 bus OFF!**

| CAN 2 bus OFF! | Code: 0x88 |

Description:
- The monitoring unit for CAN bus 2 has switched the bus offline.
14.10.1 Code: 0x89 CAN 2 bus error!

| CAN 2 bus error! | Code: 0x89 |

Description:
- The monitoring unit for CAN bus 2 indicates that the CAN bus has received several faulty messages. The bus quality is poor!
14.11 Code: 0x8A CAN 2 bus error!

<table>
<thead>
<tr>
<th>CAN 2 bus error!</th>
<th>Code: 0x8A</th>
</tr>
</thead>
</table>

Description:

- The monitoring unit for CAN bus 2 indicates that an error has occurred.
14.12 Code: 0x8B CAN bus monitoring

<table>
<thead>
<tr>
<th>CAN bus monitoring!</th>
<th>Code: 0x8B</th>
</tr>
</thead>
</table>

Description:
- The internal monitoring loop indicates an error.
15. External Communication Errors Code 0x90-0x9F

15.1 Code: 0x90 No program selection!

| No program selection! | Code: 0x90 |

Description:
- No program selection upon welding start.
15.2 **Code: 0x95 Incorrect interface module**

| Incorrect interface module! | Code: 0x95 |

Description:
- The interface card cannot be initialised or is faulty. Hardware error!
15.3 **Code: 0x96 Bus initialisation error!**

<table>
<thead>
<tr>
<th>Bus initialisation error!</th>
<th>Code: 0x96</th>
</tr>
</thead>
</table>

Description:
- Interrupted or faulty communication between the communication CPU (CoCP) and the interface card InterBus S (customer interface).
15.4 Code: 0x97 No bus communication!

| No connection to bus! | Code: 0x97 |

Description:
- The InterBusS operation is inactive.
15.5 Code: 0x98 Bus Idle!

<table>
<thead>
<tr>
<th>Bus in idle mode!</th>
<th>Code: 0x98</th>
</tr>
</thead>
</table>

Description:
- The InterBusS operation is inactive.
15.6 Code: 0x99 Bus reset!

<table>
<thead>
<tr>
<th>Bus reset!</th>
<th>Code: 0x99</th>
</tr>
</thead>
</table>

Description:
- The InterBus S control has signalled a bus reset.
16. Process Errors, Code 0xA0-0xAF

16.1 Code: 0xA0 Unacknowledged error!

<table>
<thead>
<tr>
<th>Unacknowledged error!</th>
<th>Code: 0xA0</th>
</tr>
</thead>
</table>

Description:
- A function cannot be executed due to an unacknowledged error pending for the respective output. The error has been entered in error status!
16.2 Code: 0xA1 Process fault

<table>
<thead>
<tr>
<th>Process fault!</th>
<th>Code: 0xA1</th>
</tr>
</thead>
</table>

Description:
- The device is subject to a process fault!
17. Facility Errors, Code 0xB0-0xBF

17.1 Code: 0xB0 Feeder configuration error!

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• During initialisation, the N3 has detected that the configured Feeder type does not correspond to the actually connected Feeder!</td>
</tr>
</tbody>
</table>
17.2 **Code: 0xB1 Tool configuration error!**

<table>
<thead>
<tr>
<th>Tool configuration error!</th>
<th>Code: 0xB1</th>
</tr>
</thead>
</table>

Description:
- During initialisation, the N3 has detected that the configured welding tool does not correspond to the actually connected welding tool!
17.3 **Code: 0xB2 Maintenance 80**

<table>
<thead>
<tr>
<th>Maintenance 80!</th>
<th>Code: 0xB2</th>
</tr>
</thead>
</table>

Description:
- 80% of the set maintenance interval have expired.

 Information 1: Welding output

 Information 2: Component
17.4 **Code: 0xB3 Maintenance 100**

<table>
<thead>
<tr>
<th>Maintenance 100!</th>
<th>Code: 0xB3</th>
</tr>
</thead>
</table>

Description:
- 100 % of the set maintenance interval have expired.

Information 1: Welding output

Information 2: Component
17.5 Code: 0xB4 Maintenance

| Maintenance! | Code: 0xB4 |

Description:
- Maintenance counter reached.

Information 1: Output

Information 2: Chuck = 0

Head / gun = 1

Component = 2
17.6 **Code: 0xB5 Error frequency**

<table>
<thead>
<tr>
<th>Error frequency!</th>
<th>Code: 0xB5</th>
</tr>
</thead>
</table>

Description:
- The error frequency per hour is too high.

The following errors are taken into account:
- NIO weld
- No contact
- Current threshold!
- Arc break
- No arc
- Incorrect stud
17.7 **Code: 0xBA Ethernet ON**

<table>
<thead>
<tr>
<th>Ethernet ON!</th>
<th>Code: 0xBA</th>
</tr>
</thead>
</table>

Description:
- Ethernet online.
17.8 Code: 0xBB Ethernet OFF

<table>
<thead>
<tr>
<th>Ethernet OFF!</th>
<th>Code: 0xBB</th>
</tr>
</thead>
</table>

Description:

- Ethernet offline.
17.9 Code: 0xBC Ethernet

<table>
<thead>
<tr>
<th>Ethernet!</th>
<th>Code: 0xBC</th>
</tr>
</thead>
</table>

Description:
- Ethernet socket error.
17.10 **Code: 0xBF Facility configuration**

| Facility configuration! | Code: 0xBF |

Description:

- The detected configuration does not correspond to the set configuration!